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Abstract. The synchronization properties of a simple two-dimensional Josephson array consisting of two
coupled SQUID cells are studied within the Werthamer as well as the RCSJ model. Special emphasis is
placed on the role of inductances arranged perpendicular and parallel to the current bias direction for the
phase locking behavior. The general behavior within the Werthamer model is found to be similar to that
within the RCSJ model. However, there are quantitative differences, e.g. an enhanced phase shift between
the voltage oscillations within one cell and a shift of the parameter range for the in-phase regime between
different cells towards lower values of the McCumber parameter in the Werthamer model.

PACS. 74.50.+r Proximity effects, weak links, tunneling phenomena, and Josephson effects

1 Introduction

Two-dimensional Josephson junction arrays have been
under consideration as tunable microwave oscillators pro-
viding a high radiation output [1,2]. Therefore, there
is a great interest on understanding the phase locking
behavior of such arrays. Up to now, theoretical investiga-
tions [3–9] are based on the RCSJ (resistively and capaci-
tively shunted junction) model [10,11] which describes the
behavior of shunted tunnel junctions well. Nethertheless,
arrays consisting of unshunted small-area Josephson tun-
nel junctions with high current densities are also conceiv-
able [12–14]. They allow the preparation of more compact
arrays with small loop inductances; problems connected
with the parasitic shunt impedance could be avoided. For
this kind of junctions the Werthamer theory [15] supplies
a more appropriate description. In this paper we study
synchronization properties of a basic two-dimensional ar-
ray in the Werthamer as the well as the RCSJ model. Our
aim is to decide to what extend results obtained in the
more simple RCSJ model are valid for arrays consisting
of unshunted tunnel junctions, too. Supplementing to re-
cent theoretical papers [16,17] we treat the array shown
in Figure 1 where a special emphasis is taken on the role
of inductances arranged perpendicular and parallel to the
current bias direction for the phase locking behavior. In
Section 2 we write down the basic dynamic equations of
the array within the Werthamer and the RCSJ model. In
Section 3 an analytical treatment is given within the RCSJ
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model. Finally, in Section 4 we present numerical results
for both models.

2 Werthamer and RCSJ model

Within the Werthamer model the dynamics of a Joseph-
son tunnel junction is described by a normalized integro-
differential equation for the Josephson phase φ [15]

βcφ̈(s) + φ̇(s) + iw(s) = i0 (1)

with

iw(s) = −

s∫
−∞

ds′

{
p(s− s′) sin

[
1

2
(φ(s′) + φ(s))

]

+q0(s− s′) sin

[
1

2
(φ(s′)− φ(s))

]}
. (2)

Here we introduced the quantities

s =
2eRNIC
~

t, βC =
2e

~
ICR

2
NC, i0 =

I0

IC
; (3)

βC is the McCumber parameter, IC = IC(T ) denotes the
critical current and I0 the bias current; RN is the normal-
state resistance, C is the capacitance of the junction. The
dot (·) means the derivative with respect to the dimension-
less time s. The normalized voltage v = V/ICRN across
the tunnel junction is related to the Josephson phase dif-
ference φ by v = φ̇. The response functions p(s) and q0(s)
can be described realistically, e.g. within the so-called
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Fig. 1. The simple two-dimensional Josephson junction array
under consideration.

smeared BCS model [18–20] with a complex superconduct-
ing gap parameter ∆(1 − iη). For our numerical calcula-
tions we exploited the method of Odintsov et al. [21] which
approximates the kernels p(s) and q0(s) for η = 0.02 and
T = 0.6TC by respective sums of exponential functions,
cf. [22].

Note that after setting p(s) = −δ(s) (here δ(s) is the
Dirac delta function) and q0(s) = 0, the time retardation
of the Werthamer integral (2) is lost. We get

iw(s) = sinφ (4)

leading to the RCSJ differential equation

βcφ̈(s) + φ̇(s) + sinφ(s) = i0. (5)

Applying equations (1) to the circuit shown in Figure 1,
the following set of equations can be derived

βcφ̈kl + φ̇kl + iw(φkl) = ikl , k, l = 1, 2, (6)

φk2 − φk1 − ϕe + (−1)kl⊥ī+ (ik2 − ik1)l‖ = 0, k = 1, 2
(7)

and

2i0 = i11 + i12 = i21 + i22, (8)

ī = i11 − i21 = i22 − i12. (9)

Equation (7) arises from the flux quantization around
the boundaries of both cells where the mutual inductance
terms have been neglected. The parameters

l⊥,‖ = 2πICL⊥,‖/Φ0 (10)

describe the normalized inductances arranged perpendic-
ular and parallel to the current bias direction (cf. Fig. 1)
and ϕe means the normalized external flux ϕe = 2πΦe/Φ0.
(Φ0 is the flux quantum.)

3 Analytical treatment within the RCSJ
model

In frame of the RCSJ model the array shown in Figure 1
can be treated analytically by means of a harmonic expan-
sion procedure. As we will see in Section 4, the analyti-
cal results allow to understand our numerical calculations
within the RCSJ as well as within the rather complicated
Werthamer model.

In case of the RCSJ model equations (7, 9) will be sim-
plified by setting iw(s) = sinφ, cf. equation (4). Following
the treatment of Basler et al. (see [16,23] for a more de-
tailed description of this method), we introduce sum and
difference variables

Σk =
1

2
(φk2 + φk1), (11)

∆k =
1

2
(φk2 − φk1) (12)

and define the rescaled variables

β̃c = i0βc, l̃⊥,‖ = i0l⊥,‖, s̃ = i0s. (13)

The corresponding time derivation with respect to s̃ will
be denoted by a dash. The resulting equations

β̃c∆
′′
k +∆′k + b cosΣk sin∆k =

− (−1)k
1

2(l̃⊥ + l̃‖)
(∆2 −∆1) +

1

2l̃‖
(ϕe −∆1 −∆2),

(14)

β̃cΣ
′′
k +Σ′k + b sinΣk cos∆k = 1 (15)

can be solved by means of a harmonic expansion concern-
ing the parameter b = i−1

0 . In a straightforward procedure
we find the solutions up to the first order

Σk = Σ0
k + bΣ1

k, (16)

∆k = ∆0
k + b∆1

k, (17)

where

Σ0
k = s̃+ δk + π/2, (18)

∆0
k =

ϕe

2
, (19)

Σ1
k =

cos
ϕe

2

1 + β̃2
c

[
β̃c cos(s̃+ δk)− sin(s̃+ δk)

]
, (20)

∆1
k = S(s̃)− (−1)kD(s̃) (21)
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Fig. 2. Transition between the in-phase (I) and antiphase (A1, A2) regions of the voltage oscillations in the two cells obtained
from the analytical approximation within the RCSJ model for i0 = 1.5 and (a) l‖ = 0, (b) l‖ = 0.3 and (c) l‖ = 0.7. With
increasing l‖ the boundary lines move to lower values of βc; the lower boundary line vanishes for l‖ > 1/i0.

with the abbreviations

D(s̃) =
sin

ϕe

2

1 +
(
β̃c −

1

l̃‖ + l̃⊥

)2 sin
δ1 − δ2

2

×

[
sin
(
s̃+

δ1 + δ2

2

)
−
(
β̃c −

1

l̃‖ + l̃⊥

)
cos
(
s̃+

δ1 + δ2

2

) ]
,

S(s̃) = −
sin

ϕe

2

1 +
(
β̃c −

1

l̃‖

)2 cos
δ1 − δ2

2

×

[
cos
(
s̃+

δ1 + δ2

2

)
+
(
β̃c −

1

l̃‖

)
sin
(
s̃+

δ1 + δ2

2

) ]
.

In the focus of our interest are on the one hand the phase
differences ϑk of the oscillations within the kth cell but
on the other hand the shift between the respective phases
of different cells. For the determination of the last one we
use the well-known phase-slip method [24], assuming only
slowly varying phases

δk = δk(s̃), | δ′k |� 1. (22)

Inserting equations (19, 21) in equation (15) and
averaging over the Josephson oscillation period, we
obtain a differential equation for the mean phase shift
δ = 〈δ1〉 − 〈δ2〉

βcδ
′′ + δ′ =

b2

2
sin2 ϕe

2

×

{ 1

l̃⊥ + l̃‖
− β̃c

1 +
[ 1

l̃⊥ + l̃‖
− β̃c

]2 −
1

l̃‖
− β̃c

1 +
[ 1

l̃‖
− β̃c

]2
}

sin δ. (23)

From equation (23) we find two kinds of phase locking
solutions, corresponding to the antiphase (δlock = π) and
in-phase (δlock = 0) type, respectively. Assuming a small
perturbation of the locking solution δ(s̃) = δlock+ε expλs̃,
we can derive the stability condition

{ 1

l̃⊥ + l̃‖
− β̃c

1 +

[
1

l̃⊥ + l̃‖
− β̃c

]2 −

1

l̃‖
− β̃c

1 +

[
1

l̃‖
− β̃c

]2

}

× sin2 ϕe

2
cos δlock < 0 , (24)

stipulating the boundaries between the parameter regions
corresponding to the in-phase or antiphase regime for
finite values of external flux (ϕ 6= 2nπ). In the limit

l‖ → 0 the simple curve β̃c = 1/l̃⊥ [16] separates in-phase
and antiphase solutions whereas for finite values l⊥,‖ the
stable in-phase regime is restricted by an upper and a
lower boundary given by

1

l̃‖
+

1

l̃‖ + l̃⊥
−

√( 1

l̃‖
−

1

l̃‖ + l̃⊥

)2

+ 1 < β̃c

<
1

l̃‖
+

1

l̃‖ + l̃⊥
+

√( 1

l̃‖
−

1

l̃‖ + l̃⊥

)2

+ 1 (25)

as shown in Figure 2.
With increasing values of the inductivities parallel to

the current bias direction (l‖) the lower antiphase region
A1 shrinks in favour of the in-phase regime. On the other
hand, a second antiphase region A2 appears, however, it
plays no role in parameter regions of practical interest
(βc, l⊥,‖ < 1).

Note that in the zero-field limit the stability regime
is undetermined as discussed by Filatrella and Wiesenfeld
et al. [3,4].
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Now we discuss the next question concerning the phase
difference ϑk between the voltages in the same cell. We
restrict us to the first cell. The corresponding voltage os-
cillations can be obtained differentiating the Josephson
phases

φ1l = Σ1 + (−1)l∆1, l = 1, 2 (26)

and using the solutions (16)-(21) for Σ1 and ∆1. From the
resulting voltages

v1l = ˙φ1l

= i0 −
cos

ϕe

2

1 + β̃2
c

[
β̃c sin(s̃+ δ1) + cos(s̃+ δ1)

]
+(−1)l

[
Ṡ(s̃) + Ḋ(s̃)

]
= i0 + al cos s̃+ bl sin s̃ (27)

we can read out the first order Fourier coefficients

al = −
cos

ϕe

2

1 + β̃2
c

[
β̃c sin δ + cos δ

]

+ (−1)l
1

2

sin
ϕe

2

1 +
(
β̃c −

1

l̃‖

)2

×

[
sin δ −

(
β̃c −

1

l̃‖

)(
1 + cos δ

) ]

+ (−1)l
1

2

sin
ϕe

2

1 +
(
β̃c −

1

l̃‖ + l̃⊥

)2

×

[
sin δ +

(
β̃c −

1

l̃‖ + l̃⊥

)(
1− cos δ

) ]
, (28)

bl =
cos

ϕe

2
1 + β̃2

c

[
−β̃c cos δ + sin δ

]

+ (−1)l
1

2

sin
ϕe

2

1 +
(
β̃c −

1

l̃‖

)2

[ (
β̃c −

1

l̃‖

)
sin δ + 1 + cos δ

]

+ (−1)l
1

2

sin
ϕe

2

1 +
(
β̃c −

1

l̃‖ + l̃⊥

)2

[ (
β̃c −

1

l̃‖ + l̃⊥

)

× sin δ + cos δ − 1

]
. (29)

Here, without lack of generality we have set δ2 = 0 and
hence δ1 = δ. Then, the in-phase regime between the cells

corresponds to δ = 0, the antiphase regime to δ = π. Con-
sidering only these relevant cases we get the more simple
expressions

(al)I,A = ±
{
−

cos
ϕe

2
1 + β̃2

c

+ (−1)l

×
sin

ϕe

2

1 +
(
β̃c −

1

l̃I,A

)2

( 1

l̃I,A
− β̃c

) }
, (30)

(bl)I,A = ±
{
−

cos
ϕe

2
1 + β̃2

c

β̃c + (−1)l

×
sin

ϕe

2

1 +
(
β̃c −

1

l̃I,A

)2

}
. (31)

The parameters l̃I,A characterize the inductances which
cause the phase shift in the in-phase or antiphase regime,
respectively:

l̃I = l̃‖ , (32)

l̃A = l̃⊥ + l̃‖ .

The plus sign in equations (30, 31) belongs to the in-phase
(I) and the minus sign to the antiphase (A) solution. Note
that this sign distinction is of no importance for the phase
difference ϑ ≡ ϑ1 within the first cell which can be deter-
mined from

ϑ =

{
ϑ̄ for a1b2 ≥ b1a2,
2π − ϑ̄ for a1b2 < b1a2,

(33)

where

ϑ̄ = arccos
a1a2 + b1b2√

(a2
1 + a2

2)(b21 + b22)
.

The internal phase shift ϑ as function of external flux ac-
cording to equation (33) is shown in Figure 3 for some
instructive parameters. Compared with the results of the
single SQUID cell [25] the behavior is more complicated.
We have to take into account the specific role of the induc-
tances perpendicular and parallel to the current bias direc-
tion and to distinguish between the in-phase and antiphase
regime between the cells. The value of the inductance l⊥
can not influence ϑ in the in-phase regime. Hence, for a
vanishing parallel inductance l‖ we find no phase shift ϑ.
This is caused by the fact that only in the antiphase regime
an ac current flows through the inductance l⊥. Netherthe-
less, the value of l⊥ can determine wether the in-phase
or the antiphase regime is realized. This is illustrated in
Figure 3c. Here l⊥ is chosen large enough to achieve an
in-phase regime between the cells (cf. Fig. 2a) but in the
in-phase branch it causes no phase shift.
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Fig. 3. Phase shift ϑ of the voltage oscillations within the first cell. The possible branches for the in-phase (solid line) and
antiphase (dashed line) regime are obtained from the analytical approximation within the RCSJ model. The numerical results
within the RCSJ (boxes) and the Werthamer (circles) model are indicated by open (antiphase regime) or filled (in-phase regime)
symbols; the parameters are i0 = 1.5, βc = 0.5 and (a) l⊥ = 0.1, l‖ = 0, (b) l⊥ = 0.1, l‖ = 0.2, (c) l⊥ = 1.4, l‖ = 0.

4 Numerical simulation within the
Werthamer and RCSJ model

In this section we will confirm our analytical approxima-
tions within the RCSJ model by numerical simulations
and extend our investigations to the Werthamer model.
For this purpose we have to solve equations (6-9) combined
with (2) or (4), respectively. In Figure 4 the numerically
calculated lower boundary between the in-phase (I) and
antiphase (A1) regime is shown. For the simulations an ex-
ternal flux ϕe = 1 is used because in the zero-field limit the
locking regime is undetermined (according to Eq. (24)).
Within the RCSJ model the comparison with the analyt-
ical curves shows a good agreement, at least for larger
McCumber parameters βc > 0.6; the quantitative devi-
ations for small values of βc are caused by the increas-
ing amplitude of higher harmonics in the voltage oscil-
lations. Althought the analytical condition (25) does not
depend on external flux, for parameters near the bound-
aries the numerical calculations show changes between
both regimes; the transition to the antiphase regime starts
at flux values near π.

The results obtained within the Werthamer model
show also a qualitative agreement with those of the ana-
lytical treatment. Admittedly, the boundary line is shifted
towards lower values of βc. This is caused by the retarded
response functions p(t) and q0(t) shaming a higher effec-
tive McCumber parameter as already discussed more pre-
cisely for a single SQUID-like cell [26]. Consequently, the
antiphase regime A1 vanishes already at smaller values of
l‖ compared with the RCSJ model.

Now, we turn our attention to the phase difference
ϑ within one cell. The numerical results within the
Werthamer and RCSJ model are indicated in Figure 3 by
symbols. Each symbol belongs to the antiphase or in-phase
branch according to the respective regime between the
cells. Depending on external flux this regime can vary (as
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Fig. 4. Comparison of numerical results (symbols) and ana-
lytical approximation (lines) for the lower boundary between
the in-phase and antiphase regime of the voltage oscillations in
the two cells for i0 = 1.5, ϕe = 1 and instructive values of l‖.

discussed above) and, hence, we find jumps between the
two branches within the Werthamer (Fig. 3b) and RCSJ
(Fig. 3c) model. For all parameters the numerical results
confirm the analytical approximations. In the Werthamer
model the phase shift ϑ is slightly enhanced in comparison
with the RCSJ results as it is known from the single cell.
In addition, in Figures 3b and 3c for ϕe near π different
solution branches (according to the in-phase or antiphase
regime) are realized. This is a direct consequence from the
shifted stability boundary line (cf. Fig. 4).
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5 Summary and conclusions

The phase-locking behavior of a simple two-dimensional
array consisting of two connected SQUID cells is studied
within the RCSJ as well as the Werthamer model. We
have found a qualitative agreement between both models.
Depending on the values of bias current i0, McCumber pa-
rameter βc and inductances l⊥,‖ an in-phase or antiphase
regime between the voltage oscillations of adjacent cells
is obtained for a finite external flux value. The range of
in-phase solutions in the Werthamer model is shifted to-
wards lower values of βc. In the zero-field limit for both
models the locking regime is undetermined.

The phase shift between oscillations in the same cell
increases with the loop inductances and the McCumber
parameters of the junctions. In the Werthamer model we
have found a slight enhancement of this phase shift com-
pared with the value obtained within the RCSJ model as
known from the single SQUID cell. Note that for both
models in the desired in-phase regime between the cells
only the inductances parallel to the current bias direc-
tion contribute to the phase shift. Therefore, assuming
a small external flux one should try to make the Mc-
Cumber parameters of the junctions and the inductances
parallel to the current bias as small as possible, but the
inductances perpendicular to the current bias has to be
choosen large enough to ensure a stable in-phase regime
between the cells. Note that for an extension of these
results to more complex two-dimensional arrays the in-
ductance parameters l‖,⊥ should be substituted by the
respective complete inductance matrix containing also
mutual inductance terms.
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